Respiratory symptoms in children with Ehlers-Danlos syndrome

Julia G. Harris, MD, Sanjay J. Khiani, MD, Sara A. Lowe, MSN, and Sheetal S. Vora, MD

Clinical Implication

- Children with Ehlers-Danlos syndrome can present with recurrent respiratory symptoms related to their underlying connective tissue disease that may be inaccurately attributed to asthma.

TO THE EDITOR:

Ehlers-Danlos syndrome (EDS) is a connective tissue disorder characterized by hypermobility, skin laxity, and tissue fragility. EDS is classified based on clinical manifestations, inheritance pattern, and genetic defects. The 6 subtypes per the 1997 Villefranche classification include classic, hypermobility, vascular, kyphoscoliosis, arthrochalasia, and dermatosparaxis.1 Hypermobility type EDS is characterized by generalized joint hypermobility and the presence of minor skin involvement, including hyperextensibility and/or smooth velvety skin. This subtype remains a diagnostic challenge given the lack of biomarkers and known genetic defect. In contrast, the classic type EDS is linked to a defect in type V collagen, and the 3 major diagnostic criteria are skin hyperextensibility, widened arethrocic scars, and joint hypermobility. EDS case reports discuss the increased prevalence of chest wall deformities, mild hearing impairment, dysphonia, vocal cord abnormalities, and swallowing difficulties.2-6 A recent report indicates increased atopy and asthmatic symptoms in adult patients with this syndrome.7 Data are lacking in the pediatric literature. We report respiratory symptoms in children with EDS that were misdiagnosed as asthma or that accompanied this disease.

Our series of 5 children with EDS presented to the allergy clinic with a previous diagnosis of asthma (Table I). All the patients underwent spirometry and assessment of albuterol response. Pulmonary function measurements included a forced expiratory volume in 1 second (FEV1) of 96%-124% predicted, and an FEV1 to forced vital capacity (FVC) ratio of 77% to 89%. Because the FEV1 was not reduced in association with a normal or increased FEV1/FVC ratio, there was no apparent restrictive component that may be related to a chest wall or skeletal deformity. For further evaluation of airway hyperreactivity, 1 patient underwent a methacholine challenge, which was negative. Only 2 patients had confirmed asthma with reversible airway obstruction with albuterol or exercise pulmonary function tests with a fall of the FEV1 by at least 10%.

Patient no. 1 was a 9-year-old boy with classic EDS and with a history of gastroesophageal reflux (GER) status-post fundoplication, platelet function disorder, irritable bowel syndrome, and kyphoscoliosis who presented with dyspnea and chest tightness with exercise. He was taking a bronchodilator and an inhaled corticosteroid for asthma. This patient had normal spirometry, with no response to a bronchodilator. Airway fluoroscopy was normal, and radioallergosorbent test (RAST) for common food allergens was negative. He was diagnosed with vocal cord dysfunction after a videostroscopy demonstrated significant paradoxical vocal fold movement.

Patient no. 2 was a 10-year-old boy with hypermobility type EDS who presented with nocturnal dyspnea, intermittent stridor, and cough. His asthma was being treated with a bronchodilator and montelukast. Other medical history information included GER, failure to thrive, scoliosis, recurrent croup, and bicuspid aortic valve. Spirometry was normal, without reversibility from a bronchodilator. Allergy scratch testing was positive for several common environmental and airborne allergens. The patient also had a positive RAST to egg. The patient underwent a direct laryngoscopy and rigid bronchoscopy with bronchial alveolar lavage given the concern for anatomic abnormality. He was found to have distal tracheal compression, greater than 50% at the level of the carina, with a pulsatile appearance. A subsequent angiogram chest computed tomography demonstrated a dilated ascending aorta and right innominate vessel leading to tracheal compression (the trachea was 6 mm in diameter at the level of greatest involvement) (Figure 1).

Patient no. 3 was an 11-year-old girl with hypermobility type EDS and history of failure to thrive, pancreatitis, dysautonomia, GER status-post fundoplication, and anxiety who presented with dyspnea on exertion, cough, and chronic nasal congestion. Food and drug allergies were present based on clinical history. Allergy scratch testing to common indoor and outdoor allergens was negative. Her spirometry demonstrated mild obstruction with reversibility from a bronchodilator, which confirmed a diagnosis of asthma. A flexible laryngoscopy demonstrated 100% chononal obstruction by adenoid tissue and normal vocal cord mobility. A polysomnogram was normal, without evidence of obstructive sleep apnea. She underwent an adenoidec- tomy without much improvement to her cough and snoring. A methacholine challenge and videostroscopy were recommended but not done.

Patient no. 4 was a 13-year-old girl with classic EDS and is the sibling of patient no. 1. She had a history of ichthyosis, GER, scoliosis, and irritable bowel syndrome, and presented to the clinic with dyspnea on exertion, cough, and “throat clearing.” Her asthma was treated with a bronchodilator and montelukast but with minimal effect on the symptoms. Her spirometry was normal, without significant change with bronchodilator administration. Skin testing was not performed due to ichthyosis, but RAST was negative for common environmental allergies. A methacholine challenge was negative, and an airway fluoroscopy was normal. A laryngoscopy was unable to confirm vocal cord dysfunction but this diagnosis was probable based on her symptoms and improvement with breathing exercises provided by speech therapy.

Lastly, patient no. 5 was a 14-year-old girl with hypermobility type EDS who was taking a bronchodilator and inhaled corticosteroid for her asthma. She presented with dyspnea on exertion and cough. Her medical history included anomalous right coronary artery and attention deficit hyperactivity disorder. Asthma was confirmed with spirometry, which showed a mild obstructive pattern with clinically significant bronchodilator response in symptoms and FEV1. Allergy scratch testing to
common airborne allergens was negative, and videostroboscopy was diagnostic for vocal cord dysfunction. To our knowledge, this is the first case series of patients with EDS to describe recurrent respiratory symptoms in the pediatric population. Despite all 5 patients being previously diagnosed with asthma, this was confirmed in only 2 patients, and alternate explanations were found. A study of adult patients with EDS described increased respiratory symptoms of cough, dyspnea, and nocturnal cough or wheeze, with results statistically significant compared with controls. The prevalence of asthma was increased in patients with EDS (23%) versus controls (14%) based on pulmonary function tests; however, this was not statistically significant compared with controls. In this reference, similar findings of asthma in our patients may not entirely account for their respiratory symptoms. With 2 confirmed and 1 probable case of vocal cord dysfunction in our series, this suggests an association with their underlying connective tissue disease. One review of patients with hypermobility type EDS discussed findings of incoordination or hypotonia of vocal cords in all patients who underwent videostroboscopy. However, the article failed to mention the number or age of the patients who had this diagnostic test. Dysphonia symptoms rather than cough were a primary complaint in our patients. A review of patients with hypermobility EDS described vocal cord dysfunction in 100% of cases, and similar findings were described in patients with hypermobility EDS. However, in this reference, no mention was made of other respiratory symptoms. To our knowledge, this is the first case series of patients with EDS to describe recurrent respiratory symptoms in the pediatric population. Despite all 5 patients being previously diagnosed with asthma, this was confirmed in only 2 patients, and alternate explanations were found. A study of adult patients with EDS described increased respiratory symptoms of cough, dyspnea, and nocturnal cough or wheeze, with results statistically significant compared with controls. The prevalence of asthma was increased in patients with EDS (23%) versus controls (14%) based on pulmonary function tests; however, this was not statistically significant compared with controls. In this reference, similar findings of asthma in our patients may not entirely account for their respiratory symptoms.

TABLE I. Patient characteristics

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Age/sex</th>
<th>EDS type</th>
<th>Symptoms</th>
<th>Medical history</th>
<th>FEV<sub>1</sub>, %</th>
<th>FEV<sub>1</sub>/FVC, %</th>
<th>Allergy testing</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9/boy</td>
<td>Classic</td>
<td>Dyspnea, chest tightness with exercise</td>
<td>GER status-post fundoplication, kyphoscoliosis, platelet function disorder, irritable bowel syndrome</td>
<td>102</td>
<td>83</td>
<td>RAST to aeroallergens negative</td>
<td>Vocal cord dysfunction, GER</td>
</tr>
<tr>
<td>2</td>
<td>10/boy</td>
<td>Hypermobility</td>
<td>Nocturnal dyspnea, cough, choking sensation</td>
<td>Failure to thrive, GER, pyloric web, gastrostomy tube placement, recurrent croup, scoliosis, bicuspid aortic valve</td>
<td>124</td>
<td>89</td>
<td>Scratch test positive to several common aeroallergens; RAST positive to egg</td>
<td>Vascular tracheal compression, allergic rhinitis, drug allergies, food allergy, GER</td>
</tr>
<tr>
<td>3</td>
<td>11/girl</td>
<td>Hypermobility</td>
<td>Dyspnea on exertion, cough, chronic nasal congestion</td>
<td>Failure to thrive, umbilical hernia, hiatal hernia, pancreatitis, dysautonomia, febrile seizure, GER status-post fundoplication, gastrostomy tube placement, anxiety</td>
<td>109</td>
<td>87</td>
<td>Scratch test to aeroallergens negative</td>
<td>Asthma, drug and food allergies, adenoid hypertrophy, GER</td>
</tr>
<tr>
<td>4</td>
<td>13/girl</td>
<td>Classic</td>
<td>Dyspnea on exertion, cough, throat clearing</td>
<td>Ichthyosis, atopic dermatitis, GER, scoliosis, irritable bowel syndrome</td>
<td>96</td>
<td>83</td>
<td>RAST to aeroallergens negative</td>
<td>Probable vocal cord dysfunction, GER</td>
</tr>
<tr>
<td>5</td>
<td>14/girl</td>
<td>Hypermobility</td>
<td>Dyspnea on exertion, cough</td>
<td>Anomalous right coronary artery status-post unroofing procedure, ADHD</td>
<td>101</td>
<td>77</td>
<td>Scratch test to aeroallergens negative</td>
<td>Vocal cord dysfunction, asthma</td>
</tr>
</tbody>
</table>

ADHD: Attention deficit hyperactivity disorder; **EDS:** Ehlers-Danlos syndrome; **FVC:** forced vital capacity; **GER:** gastroesophageal reflux; **RAST:** radioallergosorbent test.

FIGURE 1. Angiogram chest computed tomography of patient no. 2, demonstrating dilatation of the ascending aorta and subsequent tracheal compression.
than respiratory symptoms led to the diagnosis of vocal cord dysfunction. This series of 21 patients did not describe any respiratory or pulmonary symptoms as manifestations of EDS. No patients in our series experienced dysphonia. Our 1 patient with swallowing difficulties characterized a fairly common symptom of choking in EDS based on a recent report. A survey of 411 patients with EDS (range, 1-80 years old) self-reported swallowing difficulties in 39%, which included difficulty clearing the throat, tightness in the throat, and globus sensation. 5

We found no report that described vascular tracheal compression in EDS. Airway collapse has been described, and EDS may lead to increased airway distensibility, with inadequate connective tissue to support small airways. 7 There is a case report of a 19-year-old woman who presented with stridor and hemoptysis, and she was eventually diagnosed with EDS. Fluoroscopy of the neck demonstrated intermittent airway occlusion. 8 Vascular anomalies such as aortic dilation and dissection are reported in EDS, especially with the vascular subtype. A recent article by Atzinger et al 9 describes cardiac findings in hypermobile and classic EDS. Seven patients had dilated aortas before age 14, and only 1 child continued to show dilatation after this age. Interestingly, no one developed aortic dilatation as an adult. This study concluded that aortic root size is increased in EDS in 6% of the classic subtype and 12% of the hypermobile subtype but tends to be of little clinical significance.

Children with EDS can have recurrent respiratory symptoms due to many etiologies, including paradoxical vocal cord dysfunction and potential airway compression, which may be erroneously attributed to asthma and possibly related to their underlying connective tissue disease.

Acknowledgment

We thank Michael Zacharisen, MD, for his contribution to the article.

REFERENCES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.